Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 26 2022 09:29:41
%S 1,1,2,3,5,7,11,15,22,30,42,55,75,97,129,166,217,276,356,449,572,715,
%T 900,1117,1393,1717,2123,2601,3193,3889,4744,5748,6970,8404,10135,
%U 12165,14600,17448,20845,24813,29522,35009,41491,49031,57900,68195,80258,94234,110553,129421,151382,176724,206132,240002,279195,324255
%N Number of partitions of n where the difference between consecutive parts is at most 8.
%C Also the number of partitions of n such that all parts, with the possible exception of the largest are repeated at most eight times (by taking conjugates).
%H Vaclav Kotesovec, <a href="/A238868/b238868.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Alois P. Heinz)
%F G.f.: 1 + sum(k>=1, q^k/(1-q^k) * prod(i=1..k-1, (1-q^(9*i))/(1-q^i) ) ).
%F a(n) = Sum_{k=0..8} A238353(n,k). - _Alois P. Heinz_, Mar 09 2014
%F a(n) ~ exp(4*Pi*sqrt(n/27)) / (sqrt(2) * 3^(7/4) * n^(3/4)). - _Vaclav Kotesovec_, Jan 26 2022
%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p add(b(n-i*j, i-1), j=0..min(8, n/i))))
%p end:
%p g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p add(b(n-i*j, i-1), j=1..n/i)))
%p end:
%p a:= n-> add(g(n, k), k=0..n):
%p seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 09 2014
%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1], {j, 0, Min[8, n/i]}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1], {j, 1, n/i}]]]; a[n_] := Sum[g[n, k], {k, 0, n}]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Feb 18 2015, after _Alois P. Heinz_ *)
%o (PARI) N=66; q = 'q + O('q^N);
%o Vec( 1 + sum(k=1, N, q^k/(1-q^k) * prod(i=1,k-1, (1-q^(9*i))/(1-q^i) ) ) )
%Y Sequences "number of partitions with max diff d": A000005 (d=0, for n>=1), A034296 (d=1), A224956 (d=2), A238863 (d=3), A238864 (d=4), A238865 (d=5), A238866 (d=6), A238867 (d=7), this sequence, A238869 (d=9), A000041 (d --> infinity).
%K nonn
%O 0,3
%A _Joerg Arndt_, Mar 08 2014