%I #13 Jan 16 2025 11:29:10
%S 1,4,36,574,14206,501552
%N Combinatorial configuration types of n (unlabeled) queens on a square board.
%C I believe an early version of Chaiken et al., Part I, had a(6) = 510552, but Parts I and IV now both have a(6) = 501552. - _N. J. A. Sloane_, Aug 22 2017
%H Seth Chaiken, Christopher R. H. Hanusa, and Thomas Zaslavsky, <a href="https://doi.org/10.37236/4093">A q-queens problem. I. General theory</a>, Electronic J. Combin., 21 (2014), no. 3, Paper #P3.33, 28 pp. MR 3262270, Zbl 1298.05021. Also <a href="https://arxiv.org/abs/1303.1879">arxiv preprint</a>, arXiv:1303.1879 [math.CO], 2013-2014.
%H Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, <a href="http://arxiv.org/abs/1609.00853">A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks)</a>, arXiv preprint arXiv:1609.00853 [math.CO], 2016. See Table 8.1.
%Y Cf. A176186, A178721.
%K nonn,more
%O 1,2
%A _N. J. A. Sloane_, Mar 20 2014
%E a(6) corrected by _N. J. A. Sloane_, Aug 22 2017