Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:46:07
%S 1,2,4,9,22,53,131,323,798,1968,4853,11958,29463,72581,178803,440474,
%T 1085110,2673183,6585468,16223521,39967243,98460769,242561730,
%U 597559646,1472109847,3626595728,8934249307,22009844973,54222045921,133577963318,329074124992,810685962909
%N a(n) = p(n+3)-p(n+1), where p(n) = A238825(n).
%H Vincenzo Librandi, <a href="/A238826/b238826.txt">Table of n, a(n) for n = 1..1000</a>
%H V. M. Zhuravlev, <a href="http://www.mccme.ru/free-books/matpros/mph.pdf">Horizontally-convex polyiamonds and their generating functions</a>, Mat. Pros. 17 (2013), 107-129 (in Russian). See the sequence h(n).
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-4,1,1,3,-1).
%F G.f.: -x*(1+x)*(x^3+x^2-1)*(x-1)^2 / ( 1-3*x+4*x^3-x^4-x^5-3*x^6+x^7 ). - _R. J. Mathar_, Mar 20 2014
%p g:=proc(n) option remember; local t1;
%p t1:=[2,3,6,14,34,84,208,515];
%p if n <= 7 then t1[n] else
%p 3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
%p [seq(g(n),n=1..32)]; # A238823
%p d:=proc(n) option remember; global g; local t1;
%p t1:=[0,1];
%p if n <= 2 then t1[n] else
%p g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
%p [seq(d(n),n=1..32)]; # A238824
%p p:=proc(n) option remember; global d; local t1;
%p t1:=[0,0,0,1];
%p if n <= 4 then t1[n] else
%p p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
%p [seq(p(n),n=1..32)]; # A238825
%p [seq(p(n+3)-p(n+1),n=1..32)]; #A238826
%t CoefficientList[Series[-(1 + x) (x^3 + x^2 - 1) (x - 1)^2/(1 - 3 x + 4 x^3 - x^4 - x^5 - 3 x^6 + x^7), {x, 0, 40}], x] (* _Vincenzo Librandi_, Mar 21 2014 *)
%o (Magma) m:=40; R<x>:=LaurentSeriesRing(RationalField(), m); Coefficients(R! -x*(1+x)*(x^3+x^2-1)*(x-1)^2 / ( 1-3*x+4*x^3-x^4-x^5-3*x^6+x^7)); // _Vincenzo Librandi_, Mar 21 2014
%Y Cf. A238823-A238825.
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_, Mar 08 2014