login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of all primes p such that 2n - p is also prime.
6

%I #12 Oct 04 2020 23:28:15

%S 2,3,15,105,35,231,2145,5005,4641,53295,1616615,119301,21505,7436429,

%T 21489,57998985,3038795305,4123,13844919,10393190665,12838371,

%U 299859855,7292509103495,12023917269,70691995,37198413949697,62483343,2769282065,98755025688454681

%N Product of all primes p such that 2n - p is also prime.

%C Product of n-th row in triangle A171637;

%C All terms greater than 3 are odd, composite and squarefree numbers, cf. A024556.

%C n is prime iff n is a factor of a(n).

%C Product of the distinct primes in the Goldbach partitions of 2n. - _Wesley Ivan Hurt_, Sep 29 2020

%H Reinhard Zumkeller, <a href="/A238711/b238711.txt">Table of n, a(n) for n = 2..2000</a>

%F A020639(a(n)) = A020481(n); A006530(a(n)) = A020482(n);

%F A001221(a(n)) = A035026(n); A008472(a(n)) = A238778(n);

%F A027748(a(n),k) + A027748(a(n),l+1-k) = 2*n for k=1..l, with l=A001221(a(n)); particulary A020639(a(n))+A006530(a(n)) = 2*n;

%F a(n) = n^c(n) * Product_{i=1..n-1} (i*(2*n-i))^(c(i)*c(2*n-i)), where c is the prime characteristic (A010051). - _Wesley Ivan Hurt_, Sep 29 2020

%o (Haskell)

%o a238711 n = product $ filter ((== 1) . a010051') $

%o map (2 * n -) $ takeWhile (<= 2 * n) a000040_list

%Y Cf. A000040, A010051, A238778, subsequence of A056911.

%K nonn

%O 2,1

%A _Reinhard Zumkeller_, Mar 06 2014