%I #5 Aug 11 2014 22:46:10
%S 8,128,630,4742,30116,204216,1349732,9010526,59917746,399048464,
%T 2656049918,17682689820,117712030990,783626030284,5216639296472,
%U 34727628846946,231184402116402,1539013000632024,10245328946153388
%N Number of (n+2)X(5+2) 0..1 arrays with no element equal to all horizontal neighbors or equal to all vertical neighbors, and new values 0..1 introduced in row major order
%C Column 5 of A238654
%H R. H. Hardin, <a href="/A238651/b238651.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A238651/a238651.txt">Empirical recurrence of order 68</a>
%F Empirical recurrence of order 68 (see link above)
%e Some solutions for n=5
%e ..0..1..0..1..1..0..1....0..1..1..0..0..1..0....0..1..0..1..0..1..0
%e ..1..0..1..0..0..1..0....1..0..0..1..1..0..1....1..0..1..0..1..0..1
%e ..0..1..0..0..1..0..1....0..1..1..0..1..1..0....0..1..0..1..1..0..1
%e ..0..1..0..1..0..0..1....0..1..0..1..0..1..0....0..1..1..0..0..1..0
%e ..1..0..1..0..1..1..0....1..0..0..1..0..0..1....1..0..0..1..1..0..1
%e ..1..0..0..1..0..0..1....1..0..1..0..1..0..1....0..1..0..0..1..0..1
%e ..0..1..1..0..1..1..0....0..1..0..1..0..1..0....1..0..1..1..0..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 02 2014