login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+2)X(4+2) 0..1 arrays with no element equal to all horizontal neighbors or equal to all vertical neighbors, and new values 0..1 introduced in row major order
1

%I #4 Mar 02 2014 09:15:05

%S 5,50,189,1015,4742,23373,112827,549068,2663629,12937577,62809544,

%T 304985137,1480814097,7190093330,34911122149,169509843307,

%U 823048304238,3996280864977,19403790420427,94214378731132,457454375449573

%N Number of (n+2)X(4+2) 0..1 arrays with no element equal to all horizontal neighbors or equal to all vertical neighbors, and new values 0..1 introduced in row major order

%C Column 4 of A238654

%H R. H. Hardin, <a href="/A238650/b238650.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) +12*a(n-2) +a(n-3) -58*a(n-4) -115*a(n-5) +83*a(n-6) +312*a(n-7) +120*a(n-8) -336*a(n-9) -348*a(n-10) +420*a(n-11) +104*a(n-12) -194*a(n-13) +43*a(n-14) +35*a(n-15) -42*a(n-16) -3*a(n-17) +14*a(n-18) -a(n-19) -a(n-20)

%e Some solutions for n=5

%e ..0..1..1..0..1..0....0..1..0..1..1..0....0..1..0..1..0..1....0..1..1..0..0..1

%e ..1..0..0..1..0..1....1..0..1..0..0..1....1..0..1..0..1..0....1..0..0..1..1..0

%e ..0..1..1..0..0..1....0..1..0..1..1..0....0..1..0..1..0..1....1..0..0..1..1..0

%e ..0..1..1..0..1..0....0..1..1..0..1..0....1..0..1..0..0..1....0..1..1..0..0..1

%e ..1..0..0..1..1..0....1..0..0..1..0..1....0..1..0..1..1..0....0..1..1..0..0..1

%e ..1..0..0..1..0..1....1..0..0..1..0..1....1..0..0..1..1..0....1..0..0..1..1..0

%e ..0..1..1..0..1..0....0..1..1..0..1..0....0..1..1..0..0..1....0..1..1..0..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 02 2014