login
Number of partitions p of n such that max(p) - 2*min(p) is a part of p.
1

%I #4 Mar 06 2014 18:41:21

%S 0,0,0,1,1,2,4,6,8,12,17,24,31,42,54,73,92,118,149,192,236,298,366,

%T 459,558,692,838,1029,1238,1510,1810,2196,2618,3151,3747,4490,5315,

%U 6337,7481,8880,10447,12351,14485,17065,19964,23429,27339,31992,37227,43428

%N Number of partitions p of n such that max(p) - 2*min(p) is a part of p.

%e a(6) counts these partitions: 421, 331, 3211, 31111.

%t Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Max[p] - 2*Min[p]]], {n, 50}]

%Y Cf. A238627.

%K nonn,easy

%O 1,6

%A _Clark Kimberling_, Mar 02 2014