login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A sixth-order linear divisibility sequence related to the Pell numbers: a(n) := (1/60)*Pell(3*n)*Pell(4*n)/Pell(n).
4

%I #23 Sep 08 2022 08:46:07

%S 1,238,45507,9063516,1792708805,355009117386,70287911575687,

%T 13916722851826872,2755438412296182921,545562971271797876390,

%U 108018710075587599558731,21387159127038457710621972,4234549485214861760195346253,838419411023095574089504928386

%N A sixth-order linear divisibility sequence related to the Pell numbers: a(n) := (1/60)*Pell(3*n)*Pell(4*n)/Pell(n).

%C Let P and Q be relatively prime integers. The Lucas sequence U(n) (which depends on P and Q) is an integer sequence that satisfies the recurrence equation a(n) = P*a(n-1) - Q*a(n-2) with the initial conditions U(0) = 0, U(1) = 1. The sequence {U(n)}n>=1 is a strong divisibility sequence, i.e., gcd(U(n),U(m)) = |U(gcd(n,m))|. It follows that {U(n)} is a divisibility sequence, i.e., U(n) divides U(m) whenever n divides m and U(n) <> 0.

%C It can be shown that if p and q are a pair of relatively prime positive integers, and if U(n) never vanishes, then the sequence {U(p*n)*U(q*n)/U(n)}n>=1 is a linear divisibility sequence of order 2*min(p,q). For a proof and a generalization of this result see the Bala link.

%C Here we take p = 3 and q = 4 with P = 2 and Q = -1, for which U(n) is the sequence of Pell numbers, A000129, and normalize the sequence {U(3*n)*U(4*n)/U(n)}n>=1 to have the initial term 1.

%C For other sequences of this type see A238600, A238601 and A238603. See also A238536.

%H G. C. Greubel, <a href="/A238602/b238602.txt">Table of n, a(n) for n = 1..435</a>

%H P. Bala, <a href="/A238600/a238600_1.pdf">Divisibility sequences from strong divisibility sequences</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Divisibility_sequence">Divisibility sequence</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lucas_sequence">Lucas Sequence</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Pell_number">Pell number</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (170,5745,-40052,5745,170,-1).

%F a(n) = (1/60)*( Pell(2*n) + (-1)^n*Pell(4*n) + Pell(6*n) ).

%F The sequence can be extended to negative indices using a(-n) = -a(n).

%F O.g.f. x*(1 + 68*x - 698*x^2 + 68*x^3 + x^4)/( (1 - 6*x + x^2)*(1 + 34*x + x^2)*(1 - 198*x + x^2) ).

%F Recurrence equation: a(n) = 170*a(n-1) + 5745*a(n-2) - 40052*a(n-3) + 5745*a(n-4) + 170*a(n-5) - a(n-6).

%t Table[(1/60)*(Fibonacci[2*n, 2] + (-1)^n*Fibonacci[4*n, 2] + Fibonacci[6*n, 2]), {n, 1, 50}] (* _G. C. Greubel_, Aug 07 2018 *)

%o (PARI) x='x+O('x^30); Vec(x*(1+68*x-698*x^2+68*x^3+x^4)/((1-6*x+x^2)*(1 + 34*x+x^2)*(1-198*x+x^2))) \\ _G. C. Greubel_, Aug 07 2018

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1 +68*x-698*x^2+68*x^3+x^4)/((1-6*x+x^2)*(1+34*x+x^2)*(1-198*x+x^2)))); // _G. C. Greubel_, Aug 07 2018

%Y Cf. A000129, A238536, A238600, A238601, A238603.

%K nonn,easy

%O 1,2

%A _Peter Bala_, Mar 06 2014