%I #4 Mar 03 2014 11:36:19
%S 0,0,1,0,0,2,2,3,4,6,7,10,11,15,18,23,27,36,42,52,64,79,94,117,139,
%T 171,206,248,296,361,429,514,613,732,866,1034,1218,1443,1700,2001,
%U 2348,2764,3227,3775,4404,5137,5969,6947,8048,9333,10798,12481,14396,16618
%N Number of partitions p of n such that 2(number of parts of p) - 2*min(p) is a part of p.
%e a(8) counts these partitions: 431, 422, 332.
%t Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 2*Length[p] - 2*Min[p]]], {n, 50}]
%Y Cf. A238587.
%K nonn,easy
%O 1,6
%A _Clark Kimberling_, Mar 01 2014