login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238569
Number of compositions of n avoiding any 3-term arithmetic progression.
6
1, 1, 2, 3, 7, 11, 19, 28, 53, 83, 140, 201, 332, 486, 775, 1207, 1716, 2498, 3870, 5623, 8020, 11276, 17168, 23323, 34746, 46141, 64879, 90467, 127971, 176201, 242869, 333508, 456683, 606403, 844818, 1125922, 1496466, 2005446, 2737912, 3543506, 4824442
OFFSET
0,3
EXAMPLE
a(3) = 3: [1,2], [2,1], [3].
a(4) = 7: [1,1,2], [1,2,1], [1,3], [2,1,1], [2,2], [3,1], [4].
a(5) = 11: [1,1,3], [1,2,2], [1,3,1], [1,4], [2,1,2], [2,2,1], [2,3], [3,1,1], [3,2], [4,1], [5].
a(6) = 19: [1,1,2,2], [1,1,4], [1,2,1,2], [1,2,2,1], [1,3,2], [1,4,1], [1,5], [2,1,1,2], [2,1,2,1], [2,1,3], [2,2,1,1], [2,3,1], [2,4], [3,1,2], [3,3], [4,1,1], [4,2], [5,1], [6].
MAPLE
b:= proc(n, i, o) option remember; `if`(n=0, 1, add(
`if`(j in o, 0, b(n-j, i union {j}, select(y->0<y
and y<=n, o union map(x->2*j-x, i)))), j=1..n))
end:
a:= n-> b(n, {}, {}):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, i_List, o_List] := b[n, i, o] = If[n == 0, 1, Sum[If[MemberQ[o, j], 0, b[n - j, i ~Union~ {j}, Select[o ~Union~ (2j-i), 0<# && # <= n &]]], {j, 1, n}]]; a[n_] := b[n, {}, {}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2015, translated from Maple *)
CROSSREFS
Cf. A003407 (the same for permutations).
Cf. A178932 (the same for strict partitions).
Cf. A238423 (the same for consecutive 3-term arithmetic progressions).
Cf. A238571 (the same for partitions).
Cf. A238686.
Sequence in context: A105897 A129386 A278699 * A064270 A235633 A232232
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Feb 28 2014
STATUS
approved