login
Number of partitions p of n such that 3*min(p) + (number of parts of p) is not a part of p.
0

%I #4 Mar 02 2014 16:06:05

%S 1,2,3,5,7,10,15,21,29,39,54,73,96,126,167,217,281,359,461,587,744,

%T 935,1176,1470,1832,2271,2814,3465,4262,5219,6383,7777,9456,11458,

%U 13869,16733,20155,24208,29040,34743,41508,49473,58886,69944,82964,98208,116113

%N Number of partitions p of n such that 3*min(p) + (number of parts of p) is not a part of p.

%F a(n) + A097092(n) = A000041(n).

%e a(10) counts all the 42 partitions of 10 except these: 82, 7111, 631.

%t Table[Count[IntegerPartitions[n], p_ /; ! MemberQ[p, Length[p] + 3*Min[p]]], {n, 50}]

%Y Cf. A097092.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Feb 28 2014