|
|
A238516
|
|
a(n) = |{0 < k < n: (p(k)+1)*p(n) + 1 is prime}|, where p(.) is the partition function (A000041).
|
|
6
|
|
|
0, 1, 1, 1, 2, 3, 3, 3, 4, 5, 5, 2, 4, 6, 5, 3, 3, 3, 4, 1, 7, 7, 2, 6, 3, 8, 7, 4, 1, 6, 3, 4, 5, 8, 4, 4, 2, 2, 4, 9, 7, 6, 3, 6, 4, 2, 6, 6, 3, 8, 5, 6, 4, 7, 7, 4, 8, 7, 9, 1, 6, 7, 7, 3, 3, 7, 2, 5, 4, 10, 8, 5, 1, 8, 9, 1, 4, 6, 7, 12, 3, 2, 4, 10, 4, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
Conjecture: (i) a(n) > 0 for all n > 1. Also, for any integer n > 4 there is a positive integer k < n with (p(k)-1)*p(n) - 1 prime.
(ii) Let q(.) be the strict partition function (A000009). If n > 5, then p(n)*q(k) + 1 is prime for some 3 < k < n. If n > 6, then p(n)*q(k) - 1 is prime for some 0 < k < n. If n > 1, then q(n)*q(k) + 1 is prime for some 0 < k < n. If n > 3, then q(n)*q(k) - 1 is prime for some 0 < k < n.
We have verified that a(n) > 0 for all n = 2, 3, ..., 60000.
|
|
LINKS
|
|
|
EXAMPLE
|
a(4) = 1 since (p(1)+1)*p(4) + 1 = 2*5 + 1 = 11 is prime.
a(20) = 1 since (p(12)+1)*p(20) + 1 = 78*627 + 1 = 48907 is prime.
a(246) = 1 since (p(45)+1)*p(246) + 1 = 89135*169296722391554 + 1 = 15090263350371165791 is prime.
|
|
MATHEMATICA
|
p[n_, k_]:=PrimeQ[PartitionsP[n]*(PartitionsP[k]+1)+1]
a[n_]:=Sum[If[p[n, k], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|