login
Number of partitions p of n such that max(p) - min(p) is a part of p.
1

%I #9 Mar 02 2014 16:03:25

%S 0,0,1,1,2,4,4,7,10,14,15,27,28,43,50,69,80,115,127,176,204,268,310,

%T 412,471,606,710,892,1042,1311,1517,1885,2203,2692,3146,3834,4459,

%U 5392,6293,7540,8781,10494,12186,14482,16832,19874,23066,27171,31445,36893

%N Number of partitions p of n such that max(p) - min(p) is a part of p.

%F a(n) + A238494(n) = A000041(n).

%e a(6) = 4 counts these partitions: 42, 321, 2211, 21111.

%t Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Max[p] - Min[p]]], {n, 50}]

%Y Cf. A238494.

%K nonn,easy

%O 1,5

%A _Clark Kimberling_, Feb 27 2014