login
Number of partitions of n not containing 4*(number of parts) as a part.
0

%I #8 Mar 02 2014 16:02:32

%S 1,2,3,4,7,11,15,22,29,41,55,76,100,133,174,228,294,381,485,621,785,

%T 993,1245,1562,1943,2418,2989,3692,4535,5568,6800,8299,10085,12240,

%U 14803,17882,21527,25886,31035,37162,44381,52938,62989,74858,88770,105135,124270

%N Number of partitions of n not containing 4*(number of parts) as a part.

%C Number of partitions of n-4 containing at least one part < 5.

%F a(n) + A185325(n-4) = A000041(n) for n >= 4.

%e a(4) counts all the 5 partitions of 4 except [4].

%t Table[Count[IntegerPartitions[n], p_ /; ! MemberQ[p, 4*Length[p]]], {n, 40}]

%Y Cf. A185325.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Feb 27 2014