login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of partitions p of n not containing ceiling((min(p) + max(p))/2) as a part.
1

%I #9 Mar 01 2014 15:52:25

%S 0,0,0,1,2,4,7,11,15,25,32,45,63,84,108,150,188,247,321,407,514,666,

%T 824,1039,1304,1620,2003,2497,3054,3761,4617,5631,6848,8356,10090,

%U 12217,14751,17744,21300,25579,30553,36506,43523,51768,61458,72943,86273,101992

%N Number of partitions p of n not containing ceiling((min(p) + max(p))/2) as a part.

%F a(n) + A238484(n) = A000041(n).

%e a(6) counts these partitions: 51, 42, 411, 3111.

%t Table[Count[IntegerPartitions[n], p_ /; !MemberQ[p, Ceiling[(Min[p] + Max[p])/2]]], {n, 30}]

%Y Cf. A238482.

%K nonn,easy

%O 1,5

%A _Clark Kimberling_, Feb 27 2014