The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238456 Triangular numbers t such that t+x+y is a square, where x and y are the two squares nearest to t. 2
 0, 2211, 5151, 1107816, 20959575, 4237107540, 1564279847151, 61066162885575, 2533192954461975, 2774988107938203, 90728963274006291, 18765679728507154152720 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For triangular numbers t such that t*x*y is a square, see A001110 (t is both triangular and square). a(13) > 5*10^22. - Giovanni Resta, Mar 02 2014 LINKS EXAMPLE The two squares nearest to triangular(101)=5151 are 71^2 and 72^2. Because 5151 + 71^2 + 72^2 = 15376 is a perfect square, 5151 is in the sequence. MATHEMATICA sqQ[n_]:=Module[{c=Floor[Sqrt[n]]-1, x}, x=Total[Take[SortBy[ Range[ c, c+3]^2, Abs[#-n]&], 2]]; IntegerQ[Sqrt[n+x]]]; Select[ Accumulate[ Range[ 0, 5000000]], sqQ] (* This will generate the first 7 terms of the sequence.  To generate more, increase the second constant within the Range function, but computations will take a long time. *) (* Harvey P. Dale, May 12 2014 *) PROG (Python) def isqrt(a):     sr = 1L << (long.bit_length(long(a)) >> 1)     while a < sr*sr:  sr>>=1     b = sr>>1     while b:         s = sr + b         if a >= s*s:  sr = s         b>>=1     return sr t = i = 0 while 1:     t += i     i += 1     s = isqrt(t)     if s*s==t:  s-=1     txy = t + 2*s*(s+1) + 1   # t + s^2 + (s+1)^2     r = isqrt(txy)     if r*r==txy:  print str(t)+', ', CROSSREFS Cf. A000217, A000290, A001110, A238489. Sequence in context: A305880 A031545 A191679 * A031725 A077693 A253735 Adjacent sequences:  A238453 A238454 A238455 * A238457 A238458 A238459 KEYWORD nonn,hard,more AUTHOR Alex Ratushnyak, Feb 26 2014 EXTENSIONS a(12) from Giovanni Resta, Mar 02 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 05:39 EDT 2020. Contains 333105 sequences. (Running on oeis4.)