Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Jul 19 2018 21:21:19
%S 1,2,0,9,1,0,54,20,0,0,378,307,21,0,0,2916,4280,966,0,0,0,24057,56914,
%T 27954,1485,0,0,0,208494,736568,650076,113256,0,0,0,0,1876446,9370183,
%U 13271982,5008230,225225,0,0,0,0,17399772,117822512,248371380,167808024,24635754,0,0,0,0,0,165297834,1469283166,4366441128,4721384790,1495900107,59520825,0
%N Triangle T(n,k) read by rows: T(n,k) is the number of rooted genus-k maps with n edges, n>=0, 0<=k<=n.
%D David M. Jackson and Terry I. Visentin, An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, Chapman & Hall/CRC, circa 2000. See page 227.
%H Joerg Arndt, <a href="/A238396/b238396.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50, flattened)
%H Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], (19-March-2014).
%F From _Gheorghe Coserea_, Mar 11 2016: (Start)
%F (n+1)/6 * T(n, g) = (4*n-2)/3 * T(n-1, g) + (2*n-3)*(2*n-2)*(2*n-1)/12 * T(n-2, g-1) + 1/2 * Sum_{k=1..n-1} Sum_{i=0..g} (2*k-1) * (2*(n-k)-1) * T(k-1, i) * T(n-k-1, g-i) for all n >= 1 and 0 <= g <= n/2, with the initial conditions T(0,0) = 1 and T(n,g) = 0 for g < 0 or g > n/2.
%F For column g, as n goes to infinity we have T(n,g) ~ t(g) * n^(5*(g-1)/2) * 12^n, where t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)) and gamma is the Gamma function.
%F (End)
%e Triangle starts:
%e 00: 1,
%e 01: 2, 0,
%e 02: 9, 1, 0,
%e 03: 54, 20, 0, 0,
%e 04: 378, 307, 21, 0, 0,
%e 05: 2916, 4280, 966, 0, 0, 0,
%e 06: 24057, 56914, 27954, 1485, 0, 0, 0,
%e 07: 208494, 736568, 650076, 113256, 0, 0, 0, 0,
%e 08: 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0,
%e 09: 17399772, 117822512, 248371380, 167808024, 24635754, 0, ...,
%e 10: 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0, ...,
%e 11: 1602117468, 18210135416, 73231116024, 117593590752, 66519597474, 8608033980, 0, ...,
%e 12: 15792300756, 224636864830, 1183803697278, 2675326679856, 2416610807964, 672868675017, 24325703325, 0, ...,
%e ...
%t T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4n - 2)/3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n - k)-1) T[k-1, i] T[n-k-1, g-i] , {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
%t Table[T[n, g], {n, 0, 10}, {g, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 19 2018, after _Gheorghe Coserea_ *)
%o (PARI) N=20;
%o MEM=matrix(N+1,N+1, r,c, -1); \\ for memoization
%o Q(n,g)=
%o {
%o if (n<0, return( (g<=0) ) ); \\ not given in paper
%o if (g<0, return( 0 ) ); \\ not given in paper
%o if (n<=0, return( g==0 ) ); \\ as in paper
%o my( m = MEM[n+1,g+1] );
%o if ( m != -1, return(m) ); \\ memoized value
%o my( t=0 );
%o t += (4*n-2)/3 * Q(n-1, g);
%o t += (2*n-3)*(2*n-2)*(2*n-1)/12 * Q(n-2, g-1);
%o my(l, j);
%o t += 1/2*
%o sum(k=1, n-1, l=n-k; \\ l+k == n, both >= 1
%o sum(i=0, g, j=g-i; \\ i+j == g, both >= 0
%o (2*k-1)*(2*l-1) * Q(k-1, i) * Q(l-1, j)
%o );
%o );
%o t *= 6/(n+1);
%o MEM[n+1, g+1] = t; \\ memoize
%o return(t);
%o }
%o for (n=0, N, for (g=0, n, print1(Q(n, g),", "); ); print(); ); /* print triangle */
%Y Columns k for 0<=k<=10 are: A000168, A006300, A006301, A104742, A215402, A238355, A238356, A238357, A238358, A238359, A238360.
%Y Sum of row n is A000698(n+1).
%Y See A267180 for nonorientable analog.
%Y Cf. A269418, A269419.
%Y The triangle without the zeros is A269919.
%K nonn,tabl
%O 0,2
%A _Joerg Arndt_, Feb 26 2014