Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jun 24 2020 03:05:46
%S 2,5,1,6,6,8,8,3,3,3,5,5,0,7,9,5,2,2,1,0,2,9,2,3,4,8,3,1,0,5,3,9,6,0,
%T 6,2,3,9,8,7,5,4,1,8,0,4,0,7,3,4,2,6,6,5,5,0,8,9,2,1,4,2,0,6,1,8,5,9,
%U 6,4,7,1,4,6,9,0,7,0,6,5,0,7,9,2,9,3,0
%N Decimal expansion of (1 + 4*e^(-3/2))/(3*sqrt(2*Pi)).
%C Occurs in a formula estimating the error in approximating a binomial distribution with a normal distribution. See [Prohorov].
%D Yu. V. Prohorov, Asymptotic behavior of the binomial distribution. 1961. Select. Transl. Math. Statist. and Probability, Vol. 1 pp. 87-95. Inst. Math. Statist. and Amer. Math. Soc., Providence, R.I.
%H G. C. Greubel, <a href="/A238387/b238387.txt">Table of n, a(n) for n = 0..2500</a> [a(2500) corrected by _Georg Fischer_, Jun 23 2020]
%H Yu. V. Prohorov, <a href="http://mi.mathnet.ru/eng/umn8214">Asymptotic behavior of the binomial distribution</a>, Uspekhi Mat. Nauk, 8:3(55) (1953), 135-142 (in Russian). See lambda2 in theorem 3 p. 137.
%e 0.25166883335507952210292348310539606239875418040734266550892142061...
%t RealDigits[N[(1 + 4*Exp[-3/2])/(3*Sqrt[2*Pi]), 1001]] (* _G. C. Greubel_, Jan 26 2016 *)
%o (PARI) (1 + 4*exp(-3/2))/(3*sqrt(2*Pi)) \\ _Michel Marcus_, Feb 27 2014
%Y Cf. A103647, A238388.
%K nonn,cons
%O 0,1
%A _Eric M. Schmidt_, Feb 26 2014