login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of sum_(n>=1) H(n)^2/n^5 where H(n) is the n-th harmonic number.
7

%I #9 Dec 30 2017 17:26:35

%S 1,0,9,1,8,8,2,5,8,8,6,6,4,5,3,0,0,8,5,1,6,5,7,8,2,1,3,0,6,9,9,2,7,3,

%T 8,7,3,3,7,7,5,6,7,8,8,9,5,3,2,4,0,8,6,2,6,3,8,1,2,6,6,6,6,7,4,7,6,6,

%U 6,6,7,7,6,8,4,0,1,2,8,5,8,2,0,4,3,6,9,1,8,0,6,7,4,2,6,5,7,5,7,8

%N Decimal expansion of sum_(n>=1) H(n)^2/n^5 where H(n) is the n-th harmonic number.

%H G. C. Greubel, <a href="/A238168/b238168.txt">Table of n, a(n) for n = 1..10000</a>

%H Philippe Flajolet, Bruno Salvy, <a href="http://algo.inria.fr/flajolet/Publications/FlSa98.pdf">Euler Sums and Contour Integral Representations</a>, Experimental Mathematics 7:1 (1998) page 16.

%F Equals 6*zeta(7) - zeta(2)*zeta(5) - 5/2*zeta(3)*zeta(4).

%e 1.091882588664530085165782130699273873...

%t RealDigits[6*Zeta[7] -Zeta[2]*Zeta[5] -(5/2)*Zeta[3]*Zeta[4],10,100][[1]]

%o (PARI) 6*zeta(7) - zeta(2)*zeta(5) - (5/2)*zeta(3)*zeta(4) \\ _G. C. Greubel_, Dec 30 2017

%Y Cf. A152648, A152649, A152651, A238166, A238167, A238169.

%K nonn,cons

%O 1,3

%A _Jean-François Alcover_, Feb 19 2014