login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triangle read by rows: T(n,k) gives the number of ballot sequences of length n having largest ascent k, n>=0, 0<=k<=n.
12

%I #17 Jan 07 2015 05:23:03

%S 1,1,0,1,1,0,1,3,0,0,1,8,1,0,0,1,19,5,1,0,0,1,47,21,6,1,0,0,1,114,78,

%T 31,7,1,0,0,1,286,292,133,43,8,1,0,0,1,723,1028,586,215,57,9,1,0,0,1,

%U 1869,3691,2453,1073,325,73,10,1,0,0,1,4870,13004,10357,5058,1836,467,91,11,1,0,0

%N Triangle read by rows: T(n,k) gives the number of ballot sequences of length n having largest ascent k, n>=0, 0<=k<=n.

%C Also number of standard Young tableaux with a pair of cells (v,v+1) such that v lies k rows below v+1, and no pair (u,u+1) with a larger such separation exists.

%H Joerg Arndt and Alois P. Heinz, <a href="/A238129/b238129.txt">Table of n, a(n) for n = 0..35, flattened</a>

%e Triangle starts:

%e 00: 1;

%e 01: 1, 0;

%e 02: 1, 1, 0;

%e 03: 1, 3, 0, 0;

%e 04: 1, 8, 1, 0, 0;

%e 05: 1, 19, 5, 1, 0, 0;

%e 06: 1, 47, 21, 6, 1, 0, 0;

%e 07: 1, 114, 78, 31, 7, 1, 0, 0;

%e 08: 1, 286, 292, 133, 43, 8, 1, 0, 0;

%e 09: 1, 723, 1028, 586, 215, 57, 9, 1, 0, 0;

%e 10: 1, 1869, 3691, 2453, 1073, 325, 73, 10, 1, 0, 0;

%e 11: 1, 4870, 13004, 10357, 5058, 1836, 467, 91, 11, 1, 0, 0;

%e 12: 1, 12943, 46452, 43462, 23953, 9631, 2941, 645, 111, 12, 1, 0, 0;

%e ...

%p b:= proc(n, v, l) option remember; local m; m:=nops(l);

%p `if`(n<1, 1, expand(add(`if`(i=1 or l[i-1]>l[i],

%p (p->`if`(v<i, add(coeff(p, x, h)*`if`(h<i-v,

%p x^(i-v), x^h), h=0..max(i-v, degree(p))), p))

%p (b(n-1, i, subsop(i=l[i]+1, l))), 0), i=1..m)+

%p (p->add(coeff(p, x, h)*`if`(h<m+1-v, x^(m+1-v), x^h),

%p h=0..max(m+1-v, degree(p))))(b(n-1, m+1, [l[], 1]))))

%p end:

%p T:= n->(p->seq(coeff(p, x, i), i=0..n))(b(n-1, 1, [1])):

%p seq(T(n), n=0..14);

%t b[n_, v_, l_List] := b[n, v, l] = Module[{m = Length[l]}, If[n<1, 1, Expand[Sum[If[i == 1 || l[[i-1]]>l[[i]], Function[{p}, If[v<i, Sum[Coefficient[p, x, h]*If[h<i-v, x^(i-v), x^h], {h, 0, Max[i-v, Exponent[p, x]]}], p]][b[n-1, i, ReplacePart[l, i -> l[[i]]+1]]], 0], {i, 1, m}] + Function[{p}, Sum[Coefficient[p, x, h]*If[h<m+1-v, x^(m+1-v), x^h], {h, 0, Max[m+1-v, Exponent[p, x]]}]][b[n-1, m+1, Append[l, 1]]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n-1, 1, {1}]]; Table[T[n], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Jan 07 2015, translated from Maple *)

%Y Columns k=0-10 give: A000012, A244208, A244198, A244199, A244200, A244201, A244202, A244203, A244204, A244205, A244206.

%Y Row sums are A000085.

%Y Cf. A238128.

%K nonn,tabl

%O 0,8

%A _Joerg Arndt_ and _Alois P. Heinz_, Feb 21 2014