login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238072
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the maximum minus the minimum of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one
9
256, 1644, 1644, 10700, 16116, 10700, 67056, 157404, 157404, 67056, 438768, 1499348, 2296588, 1499348, 438768, 2752364, 14168952, 27034844, 27034844, 14168952, 2752364, 17963540, 135441648, 363809888, 506608980, 363809888
OFFSET
1,1
COMMENTS
Table starts
........256..........1644...........10700.............67056..............438768
.......1644.........16116..........157404...........1499348............14168952
......10700........157404.........2296588..........27034844...........363809888
......67056.......1499348........27034844.........506608980.........10213967484
.....438768......14168952.......363809888.......10213967484........323819924384
....2752364.....135441648......4856507148......209604948500.......9500262069216
...17963540....1301417096.....69678083388.....4182799295184.....300828077426994
..112686608...12431472388....867711409148....82645994204968....9035028981379256
..736140896..118450899788..11916017498904..1667663702267092..288763387135691996
.4617797164.1132038063428.155815394620052.34042629929788000.8588440332702563980
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 23*a(n-2) +689*a(n-4) +1889*a(n-6) +1784*a(n-8) +512*a(n-10) for n>13
k=2: [order 20] for n>24
k=3: [order 60] for n>63
EXAMPLE
Some solutions for n=2 k=4
..1..0..1..0..3....0..1..0..0..3....1..1..2..2..0....1..1..2..0..2
..2..0..1..2..0....2..1..0..2..1....1..0..2..1..2....2..1..3..1..0
..3..1..2..1..1....2..2..0..3..3....2..2..3..1..1....2..0..2..3..0
CROSSREFS
Sequence in context: A238148 A237927 A237922 * A238065 A237538 A237532
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 17 2014
STATUS
approved