Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Dec 15 2015 00:56:05
%S 3,7,5,5,13,13,3,7,19,19,7,11,11,31,23,5,31,13,19,37,53,3,13,43,23,47,
%T 43,73,7,5,19,67,29,59,79,83,11,13,11,29,73,31,61,97,89,3,23,43,19,59,
%U 109,41,67,103,109,13,17,29,73,23,73,157,43,71,109,149
%N Square array A(n,k), n>=1, k>=1, read by antidiagonals, where column k is the increasing list of all primes p such that (p+k)^2+k is also prime.
%C Prime 2 is not contained in this array.
%H Alois P. Heinz, <a href="/A238048/b238048.txt">Antidiagonals n = 1..150, flattened</a>
%e Column k=3 contains prime 47 because (47+3)^2+3 = 2503 is prime.
%e Square array A(n,k) begins:
%e 3, 7, 5, 3, 7, 5, 3, 7, ...
%e 5, 13, 7, 11, 31, 13, 5, 13, ...
%e 13, 19, 11, 13, 43, 19, 11, 43, ...
%e 19, 31, 19, 23, 67, 29, 19, 73, ...
%e 23, 37, 47, 29, 73, 59, 23, 79, ...
%e 53, 43, 59, 31, 109, 73, 29, 103, ...
%e 73, 79, 61, 41, 157, 83, 31, 109, ...
%e 83, 97, 67, 43, 163, 103, 41, 127, ...
%p A:= proc(n, k) option remember; local p;
%p p:= `if`(n=1, 1, A(n-1, k));
%p do p:= nextprime(p);
%p if isprime((p+k)^2+k) then return p fi
%p od
%p end:
%p seq(seq(A(n, 1+d-n), n=1..d), d=1..11);
%t A[n_, k_] := A[n, k] = Module[{p}, For[p = If[n == 1, 1, A[n-1, k]] // NextPrime, True, p = NextPrime[p], If[PrimeQ[(p+k)^2+k], Return[p]]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 11}] // Flatten (* _Jean-François Alcover_, Jan 19 2015, after _Alois P. Heinz_ *)
%Y Column k=1 gives A157468.
%Y Cf. A238086.
%K nonn,tabl,look
%O 1,1
%A _Alois P. Heinz_, Feb 17 2014