Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Feb 14 2014 07:16:48
%S 2,4,4,7,14,7,12,41,41,12,21,114,184,114,21,37,325,773,773,325,37,65,
%T 943,3373,4826,3373,943,65,114,2731,15038,31651,31651,15038,2731,114,
%U 200,7876,66838,213165,315896,213165,66838,7876,200,351,22702,295601,1428967
%N T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no element greater than all horizontal neighbors or less than all vertical neighbors
%C Table starts
%C ...2.....4.......7........12..........21............37..............65
%C ...4....14......41.......114.........325...........943............2731
%C ...7....41.....184.......773........3373.........15038...........66838
%C ..12...114.....773......4826.......31651........213165.........1428967
%C ..21...325....3373.....31651......315896.......3255233........33328972
%C ..37...943...15038....213165.....3255233......51576880.......810629762
%C ..65..2731...66838...1428967....33328972.....810629762.....19525964230
%C .114..7876..295601...9520138...338653847...12628484789....465620654717
%C .200.22702.1306735..63406826..3440498469..196722783963..11103987320260
%C .351.65489.5781785.422805151.35005538562.3069861742669.265336172863532
%H R. H. Hardin, <a href="/A237859/b237859.txt">Table of n, a(n) for n = 1..337</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
%F k=2: a(n) = 3*a(n-1) -2*a(n-2) +4*a(n-3) +2*a(n-4) +a(n-5)
%F k=3: [order 11]
%F k=4: [order 21]
%F k=5: [order 46]
%F k=6: [order 98]
%e Some solutions for n=4 k=4
%e ..1..1..0..1..1....1..1..1..1..1....0..0..1..1..1....1..1..1..1..0
%e ..1..1..0..1..1....1..1..0..0..0....0..0..0..1..1....0..0..1..1..0
%e ..1..1..1..1..1....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
%e ..0..1..1..1..1....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
%e ..0..1..1..1..1....1..1..1..1..1....0..0..1..1..1....1..1..1..1..1
%Y Column 1 is A005251(n+3)
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Feb 14 2014