%I #17 Aug 25 2017 10:38:11
%S 1,8,11,18,24,39,42,81,88,93,111,118,124,139,142,181,188,193,214,222,
%T 241,248,284,319,333,389,391,398,412,421,428,444,469,482,496,555,649,
%U 666,694,777,811,818,824,839,842,881,888,893,913,931
%N Product of digits of n is a nonzero cube.
%C No number with a 0 in it (A011540) can be in this sequence. If a number is in this sequence, then so is its reversal of digits (A004086) and other permutations of its digits. - _Alonso del Arte_, Feb 20 2014
%H Harvey P. Dale, <a href="/A237767/b237767.txt">Table of n, a(n) for n = 1..1000</a>
%F There are between 9^(k-6) and 9^k k-digit members of this sequence, so a(n) >> n^1.04 and in particular this sequence has density 0. - _Charles R Greathouse IV_, Feb 21 2014
%e 3*9*1 = 27 = 3^3, thus 391 is a member of this sequence.
%e 3*9*8 = 216 = 6^3, thus 398 is a member of this sequence.
%e 4*2*8 = 64 = 4^3, thus 428 is a member of this sequence.
%t pdcQ[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,0]&&IntegerQ[ Surd[ Times@@idn,3]]]; Select[Range[1000],pdcQ] (* _Harvey P. Dale_, Aug 25 2017 *)
%o (Python)
%o def DigitProd(x):
%o ..total = 1
%o ..for i in str(x):
%o ....total *= int(i)
%o ..return total
%o def Cube(x):
%o ..for n in range(1,10**3):
%o ....if DigitProd(x) == n**3:
%o ......return True
%o ....if DigitProd(x) < n**3:
%o ......return False
%o ..return False
%o x = 1
%o while x < 1000:
%o ..if Cube(x):
%o ....print(x)
%o ..x += 1
%o (PARI)
%o s=[]; for(n=1, 1000, t=eval(Vec(Str(n))); d=prod(i=1, #t, t[i]); if(d>0 && ispower(d, 3), s=concat(s, n))); s \\ _Colin Barker_, Feb 17 2014
%Y Cf. A007954, A050626.
%K nonn,base
%O 1,2
%A _Derek Orr_, Feb 12 2014