Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Oct 08 2022 07:07:22
%S 1,1,3,2,9,7,17,10,41,31,75,44,150,106,238,132,445,313,711,398,1251,
%T 853,1859,1006,3135,2129,4677,2548,7590,5042,10734,5692,16865,11173,
%U 23979,12806,36911,24105,50551,26446,75985,49539,104683,55144,155140,99996,207188,107192,300766,193574,403994
%N G.f. satisfies: A(x) = (1+x+x^2) * A(x^2)^2.
%F The odd-indexed bisection equals the self-convolution of this sequence.
%F The self-convolution cube yields A237650, the odd-indexed bisection of A195586.
%F G.f. A(x) satisfies:
%F (1) A(x) = Product_{n>=0} ( 1 + x^(2^n) + x^(2*2^n) )^(2^n).
%F (2) A(x) / A(-x) = (1+x+x^2) / (1-x+x^2).
%e G.f.: A(x) = 1 + x + 3*x^2 + 2*x^3 + 9*x^4 + 7*x^5 + 17*x^6 + 10*x^7 +...
%e where:
%e A(x) = (1+x+x^2) * (1+x^2+x^4)^2 * (1+x^4+x^8)^4 * (1+x^8+x^16)^8 * (1+x^16+x^32)^16 *...* (1 + x^(2^n) + x^(2*2^n))^(2^n) *...
%o (PARI) {a(n)=local(A=1+x);for(i=1,#binary(n),A=(1+x+x^2)*subst(A^2,x,x^2) +x*O(x^n));polcoeff(A,n)}
%o for(n=0,50,print1(a(n),", "))
%o (PARI) {a(n)=local(A=1+x);A=prod(k=0,#binary(n),(1+x^(2^k)+x^(2*2^k)+x*O(x^n))^(2^k));polcoeff(A,n)}
%o for(n=0,50,print1(a(n),", "))
%Y Cf. A002487, A195586, A237650.
%K nonn
%O 0,3
%A _Paul D. Hanna_, May 04 2014