login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of a^2 + b^2 for all nonnegative integers a,b such that b^2-a^2 = 4n.
2

%I #32 Oct 06 2019 09:19:38

%S 4,10,20,50,52,100,100,170,200,260,244,420,340,500,520,714,580,910,

%T 724,1092,1000,1220,1060,1700,1352,1700,1640,2100,1684,2600,1924,2730,

%U 2440,2900,2600,3894,2740,3620,3400,4420,3364,5000,3700,5124,4732,5300,4420,6820,5000

%N Sum of a^2 + b^2 for all nonnegative integers a,b such that b^2-a^2 = 4n.

%C In the first 50 entries, the final digit is either 0, 2, or 4. Does 6 or 8 ever occur as the last digit?

%C a(121) = 29768, a(605) = 767676. - _Alois P. Heinz_, Apr 24 2014

%H Alois P. Heinz, <a href="/A237626/b237626.txt">Table of n, a(n) for n = 1..10000</a>

%F For each pair of divisors d and d' of 4n with d*d'=4n and d<=d' find a and b satisfying b-a=d and b+a=d' and compute a^2+b^2. Add all of the results together.

%e When n=12, we get 4*12=48 and then 48 = 13^2-11^2 = 8^2-4^2 = 7^2-1^2. So a(12) = 1^2+7^2+4^2+8^2+11^2+13^2 = 420.

%t a[n_] := Module[{a, b}, a^2 + b^2 /. {ToRules[Reduce[0 <= a < b && b^2 - a^2 == 4n, {a, b}, Integers]]} // Total];

%t a /@ Range[1, 50] (* _Jean-François Alcover_, Oct 06 2019 *)

%o (PARI) a(n)=my(b);sum(a=0,n-1,if(issquare(a^2+4*n,&b),a^2+b^2)) \\ _Charles R Greathouse IV_, Apr 22 2014

%K nonn

%O 1,1

%A _J. M. Bergot_, Apr 22 2014