%I #4 Feb 09 2014 06:02:00
%S 256,1888,1888,14208,25280,14208,106496,344128,344128,106496,798208,
%T 4672896,8541016,4672896,798208,5985280,63456608,211030720,211030720,
%U 63456608,5985280,44879872,862467040,5218152940,9482488816,5218152940
%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the maximum plus the lower median minus the upper median minus the minimum of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one
%C Table starts
%C .........256..........1888..........14208..........106496...........798208
%C ........1888.........25280.........344128.........4672896.........63456608
%C .......14208........344128........8541016.......211030720.......5218152940
%C ......106496.......4672896......211030720......9482488816.....426554989880
%C ......798208......63456608.....5218152940....426554989880...34922994091800
%C .....5985280.....862467040...129193956304..19222160100656.2865493204313080
%C ....44879872...11715351424..3195177788984.864777814816088
%C ...336408576..159023453952.78931540544960
%C ..2521595904.2159737999232
%C .18907365376
%H R. H. Hardin, <a href="/A237544/b237544.txt">Table of n, a(n) for n = 1..60</a>
%F Empirical for column k:
%F k=1: a(n) = 3120*a(n-4) +121600*a(n-8) +4931584*a(n-12) -10485760*a(n-16) for n>17
%F k=2: [order 48] for n>50
%e Some solutions for n=2 k=4
%e ..0..0..0..2..2....0..2..2..0..2....2..0..2..2..0....0..0..2..0..0
%e ..1..1..0..2..1....3..0..0..1..1....3..0..0..3..3....1..1..0..0..1
%e ..0..1..0..1..2....0..3..2..3..0....0..1..2..1..2....1..2..1..2..3
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Feb 09 2014