login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the maximum plus the upper median minus the lower median minus the minimum of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one
6

%I #4 Feb 08 2014 06:42:33

%S 256,1728,1728,11960,19288,11960,84000,221512,221512,84000,589944,

%T 2584128,4248736,2584128,589944,4135648,30171224,82919944,82919944,

%U 30171224,4135648,28986208,351706460,1621147104,2719193212,1621147104

%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the maximum plus the upper median minus the lower median minus the minimum of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one

%C Table starts

%C ........256.........1728..........11960..........84000..........589944

%C .......1728........19288.........221512........2584128........30171224

%C ......11960.......221512........4248736.......82919944......1621147104

%C ......84000......2584128.......82919944.....2719193212.....89364382296

%C .....589944.....30171224.....1621147104....89364382296...4939887793804

%C ....4135648....351706460....31641923080..2932161164292.272584971093496

%C ...28986208...4095080272...616331002428.95933647220152

%C ..203229696..47706224548.12011356925024

%C .1425235712.556422733920

%C .9994034688

%H R. H. Hardin, <a href="/A237494/b237494.txt">Table of n, a(n) for n = 1..60</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 24] for n>27

%F k=2: [order 80] for n>82

%e Some solutions for n=2 k=4

%e ..0..1..0..2..0....0..1..2..1..2....0..0..2..1..0....0..2..0..0..0

%e ..1..0..2..2..1....1..1..2..0..1....0..3..3..1..0....3..1..0..2..1

%e ..3..1..1..0..1....2..2..0..2..2....2..1..0..0..2....0..3..2..1..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Feb 08 2014