%I #14 Dec 09 2014 03:33:09
%S 1,11,3,13,113,1113,11113,111113,1111113,31,131,33,133,1133,11133,
%T 111133,1111133,11111133,111111133,1111111133,11111111133,
%U 111111111133,1111111111133,11111111111133,111111111111133,1111111111111133,11111111111111133,111111111111111133,311,1311,313,1313,11313,111313,1111313,11111313,331,1331,333,1333,11333
%N Minimal representation (considered minimal in any canonical base b > 3) of n in a binary system with two distinct digits "1" and "3", not allowing zeros, where a digit d in position p (p = 1,2,3,...,n) represents the value d^p.
%C If digit "1" exists, the digits used in these numeral systems do not need to be consecutive.
%e a(11) = 131 because 1^3 + 3^2 + 1^1 = 11.
%Y Cf. A235860.
%K nonn,base
%O 1,2
%A _Robin Garcia_, Feb 08 2014