login
Minimal representation (considered minimal in any canonical base b > 3) of n in a binary system with two distinct digits "1" and "3", not allowing zeros, where a digit d in position p (p = 1,2,3,...,n) represents the value d^p.
1

%I #14 Dec 09 2014 03:33:09

%S 1,11,3,13,113,1113,11113,111113,1111113,31,131,33,133,1133,11133,

%T 111133,1111133,11111133,111111133,1111111133,11111111133,

%U 111111111133,1111111111133,11111111111133,111111111111133,1111111111111133,11111111111111133,111111111111111133,311,1311,313,1313,11313,111313,1111313,11111313,331,1331,333,1333,11333

%N Minimal representation (considered minimal in any canonical base b > 3) of n in a binary system with two distinct digits "1" and "3", not allowing zeros, where a digit d in position p (p = 1,2,3,...,n) represents the value d^p.

%C If digit "1" exists, the digits used in these numeral systems do not need to be consecutive.

%e a(11) = 131 because 1^3 + 3^2 + 1^1 = 11.

%Y Cf. A235860.

%K nonn,base

%O 1,2

%A _Robin Garcia_, Feb 08 2014