login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nonisomorphic Hamiltonian cycles on 2n X 2n square grid of points with exactly one axis of reflective symmetry.
2

%I #19 Jun 30 2023 10:27:02

%S 0,1,19,1394,281990,377205809,1539951848735,44222409563201991,

%T 3842818845468254120853,2396657968905952750257244144

%N Number of nonisomorphic Hamiltonian cycles on 2n X 2n square grid of points with exactly one axis of reflective symmetry.

%H Ed Wynn, <a href="http://arxiv.org/abs/1402.0545">Enumeration of nonisomorphic Hamiltonian cycles on square grid graphs</a>, arXiv:1402.0545 [math.CO], 2014.

%F a(n) = A227257(n) - A237430(n).

%e The following two cycles with n=3 are counted only once, since they are isomorphic under the full symmetry group of the square. They have a horizontal and a vertical axis respectively. No example has a diagonal axis, since this brings other symmetries (see A063524).

%e o-o-o-o-o-o o-o o-o o-o

%e | | | | | | | |

%e o o-o-o-o-o o o o o o o

%e | | | | | | | |

%e o o-o-o-o-o o o o o o o

%e | | | | | | | |

%e o o-o-o-o-o o o o o o o

%e | | | | | | | |

%e o o-o-o o-o o o-o o-o o

%e | | | |

%e o-o-o-o-o-o o-o-o-o-o-o

%Y Cf. A209077, A227257, A237430.

%K nonn,walk,more

%O 1,3

%A _Ed Wynn_, Feb 07 2014