login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form (10^a + 10^b + 1)/3.
9

%I #51 Aug 20 2024 10:34:37

%S 1,4,7,34,37,67,334,337,367,667,3334,3337,3367,3667,6667,33334,33337,

%T 33367,33667,36667,66667,333334,333337,333367,333667,336667,366667,

%U 666667,3333334,3333337,3333367,3333667,3336667

%N Numbers of the form (10^a + 10^b + 1)/3.

%C Has the property that the product of any two (not necessarily distinct) terms has digits in nondecreasing order.

%C Conjecture: This sequence is in a sense the maximally dense sequence with this nondecreasing products property. That is, it appears that every maximal sequence is either (i) A237424, (ii) a finite set of "extra" terms plus A237424 restricted to b=0 (which is A093137), or (iii) a finite set of "extra" terms plus A237424 restricted to a=b (which is A067275). (There might be one more case, not yet identified.) - _David Applegate_, Feb 12 2014

%C See A254143 and link for products a(i)*a(j) in natural order. - _Reinhard Zumkeller_, Jan 28 2015

%H Reinhard Zumkeller, <a href="/A237424/b237424.txt">Table of n, a(n) for n = 1..10000</a> (first 1035 terms from Robert G. Wilson v)

%H Reinhard Zumkeller, <a href="/A254143/a254143.txt">First 10000 products of any two terms of A237424</a>

%F a(n) = (A052216(n) + 1)/3. - _Reinhard Zumkeller_, Jan 28 2015

%t Union@ Flatten@ Table[(10^a + 10^b + 1)/3, {a, 0, 8}, {b, a, 8}] (* _Robert G. Wilson v_, Jan 26 2015 *)

%t (10^#[[1]]+10^#[[2]]+1)/3&/@Tuples[Range[0,8],2]//Union (* _Harvey P. Dale_, May 28 2019 *)

%o (Haskell)

%o a237424 = flip div 3 . (+ 1) . a052216

%o -- _Reinhard Zumkeller_, Jan 28 2015

%o (PARI) list(lim)=my(v=List(),a,t); while(1, for(b=0,a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++) \\ _Charles R Greathouse IV_, May 13 2015

%o (Magma)

%o A052216:=[10^(n-1) + 10^(k-1): k in [1..n], n in [1..100]];

%o A237424:= func< n | (A052216[n]+1)/3 >;

%o [A237424(n): n in [1..100]]; // _G. C. Greubel_, Feb 22 2024

%o (SageMath)

%o A052216=flatten([[10^(n-1) + 10^(k-1) for k in range(1,n+1)] for n in range(1,101)])

%o def A237424(n): return (A052216[n-1]+1)//3

%o [A237424(n) for n in range(1,101)] # _G. C. Greubel_, Feb 22 2024

%Y Cf. A028819, A028820, A028821, A052216, A067275, A093137, A234841, A254143.

%K nonn

%O 1,2

%A _Ahmad J. Masad_, Feb 07 2014

%E Edited by _David Applegate_, Feb 07 2014