login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A237422 Number of prime pairs {2^n - (2k + 1), (2k + 1)*2^n - 1}, k < n. 2
0, 1, 2, 2, 1, 1, 1, 1, 0, 2, 0, 2, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 3, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

If k = 0, then the two numbers in the "prime pair" are actually the same number, 2^n - 1 (a Mersenne prime; see A000668).

LINKS

Table of n, a(n) for n=1..87.

EXAMPLE

a(2) = 1 because 2^2-(2*0+1)=3 and (2*0+1)*2^2-1=3 for k=0;

a(3) = 2 because 2^3-(2*0+1)=7 and (2*0+1)*2^3-1=7 for k=0, 2^3-(2*1+1)=5 and (2*1+1)*2^3-1=23 for k=1;

a(4) = 2 because 2^4-(2*1+1)=13 and (2*1+1)*2^4-1)=47 for k=1, 2^4-(2*2+1)=11 and (2*2+1)*2^4-1=59 for k=2.

MATHEMATICA

a[n_] := Length@Select[Range[0, n-1], PrimeQ[2^n - (2*#+1)] && PrimeQ[(2*#+1) * 2^n-1] &]; Array[a, 90] (* Giovanni Resta, Mar 04 2014 *)

CROSSREFS

Cf, A000043, A238694.

Sequence in context: A054535 A054534 A085769 * A102552 A131341 A124034

Adjacent sequences:  A237419 A237420 A237421 * A237423 A237424 A237425

KEYWORD

nonn

AUTHOR

Ilya Lopatin and Juri-Stepan Gerasimov, Mar 04 2014

EXTENSIONS

a(6), a(42), a(48)-a(87) from Giovanni Resta, Mar 04 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 06:48 EST 2021. Contains 340204 sequences. (Running on oeis4.)