login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

For k in {2,3,...,9} define a sequence as follows: a(0)=0; for n>=0, a(n+1)=a(n)+1, unless a(n) ends in k, in which case a(n+1) is obtained by replacing the last digit of a(n) with the digit(s) of k^3. This is k(2).
2

%I #29 Mar 02 2024 14:20:21

%S 0,1,2,8,9,10,11,12,18,19,20,21,22,28,29,30,31,32,38,39,40,41,42,48,

%T 49,50,51,52,58,59,60,61,62,68,69,70,71,72,78,79,80,81,82,88,89,90,91,

%U 92,98,99,100,101,102,108,109,110,111,112,118,119,120,121,122,128

%N For k in {2,3,...,9} define a sequence as follows: a(0)=0; for n>=0, a(n+1)=a(n)+1, unless a(n) ends in k, in which case a(n+1) is obtained by replacing the last digit of a(n) with the digit(s) of k^3. This is k(2).

%C Nonnegative integers m such that floor(2*m^2/10) = 2*floor(m^2/10). [_Bruno Berselli_, Dec 08 2015]

%H Vincenzo Librandi, <a href="/A237415/b237415.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).

%F G.f.: x*(1 + x + 6*x^2 + x^3 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)). [_Bruno Berselli_, Feb 08 2014]

%F a(n) = a(n-1)+a(n-5)-a(n-6). - _Vincenzo Librandi_, Feb 12 2014

%t LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 1, 2, 8, 9, 10}, 70] (* _Bruno Berselli_, Feb 08 2014 *)

%t CoefficientList[Series[x (1 + x + 6 x^2 + x^3 + x^4)/((1 - x)^2 (1 + x + x^2 + x^3 + x^4)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Feb 12 2014 *)

%t NestList[If[Mod[#,10]==2,FromDigits[Join[Most[IntegerDigits[#]],{8}]], #+ 1]&,0,100] (* _Harvey P. Dale_, Feb 21 2016 *)

%o (Magma) I:=[0,1,2,8,9,10]; [n le 6 select I[n] else Self(n-1)+Self(n-5)-Self(n-6): n in [1..80]]; // _Vincenzo Librandi_, Feb 12 2014

%Y Cf. A235498, A235499, A237341 - A237346.

%K nonn,base,easy

%O 0,3

%A _Vincenzo Librandi_, Feb 07 2014

%E Definition by _N. J. A. Sloane_, Feb 07 2014