login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = the smallest number k such that Sum_{d|k} 1/tau(d) >= n.
4

%I #84 Sep 08 2022 08:46:06

%S 1,6,24,60,180,420,840,2520,4620,9240,13860,27720,55440,55440,110880,

%T 166320,180180,360360,360360,720720,720720,1441440,1801800,2162160,

%U 3063060,4084080,6126120,6126120,6126120,12252240,12252240,18378360,24504480,24504480,30630600,36756720

%N a(n) = the smallest number k such that Sum_{d|k} 1/tau(d) >= n.

%C Are there numbers n > 1 such that Sum_{d|n} 1/tau(d) is an integer?

%C Values of function F = Sum_{d|n} 1/tau(d) for some numbers according to their prime signature: F{} = 1; F{1} = 3/2; F{2} = 11/6; F{1, 1} = 9/4; F{3} = 25/12; F{2, 1} = 11/4; F{4} = 137/60; F{3, 1} = 25/8, ...

%C All terms are of the form Product_{j=1..k} prime(j)^e(j) where e(j+1)<= e(j), and thus products of (not necessarily distinct) primorials. - _Robert Israel_, Dec 21 2015

%C From _David A. Corneth_, Nov 05 2019: (Start)

%C Instead of checking all divisors of A025487(n), one could use A318277 to see how often each prime signature occurs as a divisor.

%C Knowing the lcm of the terms below some m drastically improves the possibility of finding terms. In hindsight, knowing the lcm of the terms below 10^25 yields having to consider 1056 terms of A025487 instead of 222124. Is there some way to accurately predict the lcm to improve computation? (End)

%H David A. Corneth, <a href="/A237350/b237350.txt">Table of n, a(n) for n = 1..3338</a> (first 131 terms from Robert Israel, terms <= 10^25)

%H David A. Corneth, <a href="/A237350/a237350.gp.txt">m, Sum_{d|a(m)} 1/tau(d) and the prime signature of a(m)</a>

%e For n = 2; a(2) = 6 because 6 is the smallest number with Sum_{d|6} 1/tau(d) = 1/1 + 1/2 + 1/2 + 1/4 = 9/4 >= 2.

%p N:= 10^9: # to get all entries <= N

%p Primorials:= NULL:

%p p:= 2: P:= p:

%p while P <= N do

%p Primorials:= Primorials, P;

%p p:= nextprime(p);

%p P:= P*p;

%p od:

%p Primorials:= [Primorials]:

%p S:= {1}:

%p for i from 1 to nops(Primorials) do

%p S:= {seq(seq(s*Primorials[i]^j,

%p j = 0 .. floor(log[Primorials[i]](N/s))),s=S)}

%p od:

%p A:= NULL:

%p S:= sort(convert(S,list)):

%p xmax:= 0:

%p for s in S do

%p x:= floor(add(1/numtheory:-tau(d),d=numtheory:-divisors(s)));

%p if x > xmax then

%p A:= A, s$(x-xmax);

%p xmax:= x

%p fi

%p od:

%p A; # _Robert Israel_, Dec 21 2015

%t s[1] = 1; s[n_] := DivisorSum[n, 1/DivisorSigma[0, #] &]; n = 1; k = 1; seq = {}; Do[While[s[k] < n, k++]; AppendTo[seq, k]; n++, {j, 1, 20}]; seq (* _Amiram Eldar_, Jan 30 2019 *)

%o (Magma) a:=1; S:=[a]; for n in [2..14] do k:=0; flag:= true; while flag do k+:=1; if &+[1/NumberOfDivisors(d): d in Divisors(k)] gt n then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;

%o (PARI) a(n) = {my(k=1); while(sumdiv(k, d, 1/numdiv(d)) < n, k++); k;} \\ _Michel Marcus_, Dec 20 2015

%Y Cf. A000005, A002110, A025487, A253139, A265390, A265391, A265392, A318277.

%Y Cf. A265393 (a(n) = the smallest number k such that floor(Sum_{d|k} 1/tau(d)) = n).

%K nonn

%O 1,2

%A _Jaroslav Krizek_, Dec 13 2015

%E a(24)-a(30) from _Michel Marcus_, Dec 20 2015

%E a(31)-a(35) from _Robert Israel_, Dec 21 2015

%E Missing a(31) = 12252240 inserted in data section by _Georg Fischer_, Nov 05 2019