login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237332
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the upper median plus the lower median minus the minimum of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one
8
81, 320, 320, 1264, 1660, 1264, 5120, 8588, 8588, 5120, 20692, 45996, 58296, 45996, 20692, 82800, 242644, 414268, 414268, 242644, 82800, 332192, 1279474, 2870224, 3988852, 2870224, 1279474, 332192, 1346016, 6740992, 19874388, 36921568
OFFSET
1,1
COMMENTS
Table starts
.......81........320........1264..........5120...........20692...........82800
......320.......1660........8588.........45996..........242644.........1279474
.....1264.......8588.......58296........414268.........2870224........19874388
.....5120......45996......414268.......3988852........36921568.......342809906
....20692.....242644.....2870224......36921568.......449909120......5467718444
....82800....1279474....19874388.....342809906......5467718444.....88161950500
...332192....6740992...137663582....3194951224.....67160833084...1426506722524
..1346016...36117846...978134492...31126440590....873971263352..24924114752042
..5439936..190631336..6780688008..290583883424..10725570823166.399514227564720
.21769152.1005363146.46959680920.2718308070358.130884937973764
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 288*a(n-4) -6720*a(n-8) +33536*a(n-12) for n>15
k=2: [order 32] for n>34
EXAMPLE
Some solutions for n=3 k=4
..0..1..0..2..2....0..2..1..0..2....0..0..1..2..2....0..1..0..1..1
..0..1..1..1..2....2..1..2..0..2....2..1..2..2..2....1..0..2..1..0
..0..2..2..1..0....1..0..0..2..1....1..0..2..2..1....0..0..0..0..1
..2..0..1..2..2....0..2..2..1..2....2..2..2..1..0....1..1..2..0..0
CROSSREFS
Sequence in context: A237550 A237567 A237560 * A237325 A158776 A101963
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 06 2014
STATUS
approved