login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k such that A000041(k) == 2 (mod 4).
7

%I #14 Dec 20 2024 12:20:05

%S 2,8,9,10,19,22,25,27,28,31,34,40,42,45,46,47,50,57,64,65,79,86,97,

%T 101,103,110,129,147,151,158,160,163,167,170,174,175,176,184,197,198,

%U 207,213,217,224,227,228,241,245,246,247

%N Numbers k such that A000041(k) == 2 (mod 4).

%C The set of positive integers is partitioned by the sequences A237278-A237281.

%H Clark Kimberling, <a href="/A237280/b237280.txt">Table of n, a(n) for n = 1..1000</a>

%e A000041(8) = 22 == 2 (mod 4).

%t f[n_, k_] := Select[Range[250], Mod[PartitionsP[#], n] == k &]

%t Table[f[4, k], {k, 0, 3}] (* A237278-A237281 *)

%Y Cf. A000041, A237276, A237278, A237279, A237281.

%Y Cf. A121062.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Feb 05 2014