login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the minimum minus the upper median minus the lower median of every 2X2 subblock equal
9

%I #4 Feb 04 2014 05:55:53

%S 81,245,245,777,997,777,2597,4365,4365,2597,8961,20669,25705,20669,

%T 8961,31837,102265,165317,165317,102265,31837,115561,525809,1096689,

%U 1470317,1096689,525809,115561,427093,2783881,7519165,13373885,13373885,7519165

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the minimum minus the upper median minus the lower median of every 2X2 subblock equal

%C Table starts

%C ......81.......245.........777..........2597...........8961............31837

%C .....245.......997........4365.........20669.........102265...........525809

%C .....777......4365.......25705........165317........1096689..........7519165

%C ....2597.....20669......165317.......1470317.......13373885........126858645

%C ....8961....102265.....1096689......13373885......162748369.......2072721981

%C ...31837....525809.....7519165.....126858645.....2072721981......36060137413

%C ..115561...2783881....52597313....1234905853....26807862753.....634189439561

%C ..427093..15103101...374547449...12370941453...355704138649...11585807404557

%C .1600465..83563325..2703084433..127000947377..4803893151225..217053368329433

%C .6064925.469820341.19737083525.1334978964337.66107444542473.4199505368448321

%H R. H. Hardin, <a href="/A237167/b237167.txt">Table of n, a(n) for n = 1..220</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 9]

%F k=2: [order 16]

%F k=3: [order 30]

%F k=4: [order 59]

%e Some solutions for n=3 k=4

%e ..0..2..2..2..1....0..0..1..1..1....1..1..2..1..1....0..2..1..1..2

%e ..1..2..1..2..2....1..1..0..0..2....2..2..1..0..0....1..1..0..2..1

%e ..0..2..2..2..1....0..2..1..1..1....1..1..0..1..1....0..2..1..1..0

%e ..1..2..1..2..2....1..1..2..2..2....2..2..1..2..2....2..0..1..1..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Feb 04 2014