login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = Number of (n+1) X (k+1) 0..3 arrays with the maximum plus the minimum of every 2 X 2 subblock equal.
8

%I #8 Apr 14 2015 08:32:52

%S 256,1868,1868,14096,37652,14096,111900,762508,762508,111900,912848,

%T 16547988,39065788,16547988,912848,7609244,367558796,2178706440,

%U 2178706440,367558796,7609244,64386416,8327731884,122764464080

%N T(n,k) = Number of (n+1) X (k+1) 0..3 arrays with the maximum plus the minimum of every 2 X 2 subblock equal.

%C Table starts:

%C .....256.......1868.........14096...........111900..............912848

%C ....1868......37652........762508.........16547988...........367558796

%C ...14096.....762508......39065788.......2178706440........122764464080

%C ..111900...16547988....2178706440.....317411030268......46125739204336

%C ..912848..367558796..122764464080...46125739204336...17061532793217332

%C .7609244.8327731884.7033328776428.6800622630757224.6399495495536326520

%H R. H. Hardin, <a href="/A237158/b237158.txt">Table of n, a(n) for n = 1..112</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 10]

%F k=2: [order 16]

%F k=3: [order 38]

%F k=4: [order 84]

%e Some solutions for n=2, k=4:

%e ..0..0..0..3..1....0..0..0..0..2....0..0..0..3..1....0..0..0..0..1

%e ..0..3..0..0..2....0..3..1..3..3....0..3..0..3..0....0..3..3..1..3

%e ..2..0..2..3..1....2..2..0..1..0....1..2..0..0..3....0..3..0..0..3

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Feb 04 2014