login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest semiprime of the form k^prime(n)+1, or 0 if no such semiprime exists.
4

%I #36 Feb 08 2014 18:01:40

%S 10,9,33,129,2049,8193,131073,524289,8388609,

%T 21214052113249267732127817825945098816023915043832462900000000000000000000000000001,

%U 2147483649,356811923176489970264571492362373784095686657,1821119122882338858450163704901509732674059569636703920027007853793548503164173361298060584748698304513

%N Smallest semiprime of the form k^prime(n)+1, or 0 if no such semiprime exists.

%C For n > 1, smallest number k^p+1 with both (k^p+1)/(k+1) and k+1 prime, where p = prime(n); the corresponding primes (k^p+1)/(k+1) for n > 1 are A237116(n) = 3, 11, 43, 683, 2731, 43691, 174763, 2796203, ... and the corresponding primes k+1 are A237115(n) = 3, 3, 3, 3, 3, 3, 3, 3, 691, 3, 17, ... .

%C a(n) == its smaller prime factor A237115(n) (mod prime(n)). Proof: 10 == 2 (mod 2), so true for n=1. For n>1, true by Fermat's little theorem: k^p+1 == k+1 (mod p).

%C a(n) is in A006881 (squarefree semiprimes), except for a(2) = 9 = 3^2. Proof: True for n=1. For n>1, if k^p+1 = (k+1)^2, then k^(p-1) = k+2, so k*(k^(p-2)-1) = 2. Now k>1 implies k=2 and p=3, so that n=2.

%C It appears that a(n) mod p > 0 for all n > 2 (see A237117), where p = prime(n). If true, then the larger prime factor A237116(n) of a(n) is == 1 (mod p), since a(n) == its smaller prime factor (mod p).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Semiprime.html">Semiprime</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Semiprime">Semiprime</a>

%F a(n) = A237115(n)*A237116(n), for n > 0.

%F a(n) = (A237115(n)-1)^prime(n)+1, for n > 1.

%F a(n) == A237115(n) (mod prime(n)), for n > 0.

%F a(n) mod prime(n) = A237117(n), if a(n) > 0.

%e Prime(1)=2 and the smallest semiprime of the form k^2+1 is a(1) = 3^2+1 = 10 = 2*5.

%e Prime(2)=3 and the smallest semiprime of the form k^3+1 is a(2) = 2^3+1 = 9 = 3*3.

%t L = {10}; Do[p = Prime[k]; n = 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1); While[! PrimeQ[cp], n = n + 1; q = Prime[n] - 1; cp = (q^p + 1)/(q + 1)]; L = Append[L, q^p + 1], {k, 2, 12}]; L

%Y Cf. A001358, A006881, A103795, A123627, A123628, A237040, A237115, A237116, A237117.

%K nonn

%O 1,1

%A _Jonathan Sondow_, Feb 04 2014