login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Semiprimes of the form (2*p)^3 + 1, where p is prime.
6

%I #11 Jul 21 2021 11:30:51

%S 65,217,10649,195113,1191017,45882713,55742969,946966169,2106997769,

%T 2289529433,2548895897,10735357817,26946035993,54958685609,

%U 77199941513,131561576057,132495001193,440016501017,456888832409,623273556089,848202406697,966188398457

%N Semiprimes of the form (2*p)^3 + 1, where p is prime.

%H Amiram Eldar, <a href="/A237039/b237039.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Semiprime.html">Semiprime</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Semiprime">Semiprime</a>.

%F a(n) = (2*A237038(n))^3 + 1.

%e (2*2)^3 + 1 = 65 = 5*13 is a semiprime, so a(1) = 2.

%t L = Select[Range[5000], PrimeQ[#] && PrimeQ[(2 #)^2 - 2 # + 1] && PrimeQ[2 # + 1] &]; (2 L)^3 + 1

%t Select[Table[(2p)^3+1,{p,Prime[Range[1000]]}],PrimeOmega[#]==2&] (* _Harvey P. Dale_, Jul 21 2021 *)

%Y Cf. A001358, A046315, A081256, A096173, A096174, A237037, A237038, A237040.

%K nonn

%O 1,1

%A _Jonathan Sondow_, Feb 02 2014