OFFSET
4,1
LINKS
Wikipedia, Alternating group
FORMULA
From Alois P. Heinz, Feb 04 2014: (Start)
G.f.: -x^4*(7*x^8-28*x^7+42*x^6-20*x^5-20*x^4+30*x^3-10*x^2-3)/(x-1)^4.
a(n) = 2*C(n,3) = A007290(n) for n>=9. (End)
EXAMPLE
For n = 4 the conjugacy classes of size greater than 1 of Alt(n) are
{(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)},
{(2,4,3), (1,2,3), (1,3,4), (1,4,2)},
{(2,3,4), (1,2,4), (1,3,2), (1,4,3)},
the smallest of which has 3 elements, hence a(4) = 3.
MATHEMATICA
Join[{3, 12, 40, 70, 105}, 2*Binomial[Range[9, 50], 3]] (* Harvey P. Dale, Apr 07 2018 *)
PROG
(GAP)
a:=function(n)
local G, CC, SCC, SCC1;
G:=AlternatingGroup(n);
CC:=ConjugacyClasses(G);;
SCC:=List(CC, Size);
SCC1:=Difference(SCC, [1]);
return Minimum(SCC1);
end;;
CROSSREFS
KEYWORD
nonn
AUTHOR
W. Edwin Clark, Feb 02 2014
STATUS
approved