login
Number of partitions of the 6-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes.
2

%I #6 Mar 11 2019 06:43:01

%S 1,6,72,1065,17604,311472,5770692,110530514,2171011800,43490709702,

%T 885138113016,18250712631216,380432844142092,8003697071972760,

%U 169728054535951520,3624215619984643650,77857888349211858000,1681568232191988128040,36491768084579204728800

%N Number of partitions of the 6-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes.

%H Alois P. Heinz, <a href="/A237021/b237021.txt">Table of n, a(n) for n = 0..300</a>

%H Yu Hin (Gary) Au, Fatemeh Bagherzadeh, Murray R. Bremner, <a href="https://arxiv.org/abs/1903.00813">Enumeration and Asymptotic Formulas for Rectangular Partitions of the Hypercube</a>, arXiv:1903.00813 [math.CO], Mar 03 2019.

%F G.f. G satisfies: x = Sum_{i=0..6} (-1)^i*C(6,i)*(G*x)^(2^(6-i)).

%Y Column k=6 of A237018.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Feb 02 2014