login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the lower median minus the upper median minus the minimum of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one
9

%I #4 Feb 02 2014 07:19:45

%S 81,360,360,1600,2376,1600,7200,15552,15552,7200,32400,104976,149632,

%T 104976,32400,144000,699840,1513728,1513728,699840,144000,640000,

%U 4618944,14963200,23825664,14963200,4618944,640000,2880000,30233088,145732608

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the lower median minus the upper median minus the minimum of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one

%C Table starts

%C .......81........360..........1600............7200.............32400

%C ......360.......2376.........15552..........104976............699840

%C .....1600......15552........149632.........1513728..........14963200

%C .....7200.....104976.......1513728........23825664.........363916800

%C ....32400.....699840......14963200.......363916800........8552563200

%C ...144000....4618944.....145732608......5454273024......192222720000

%C ...640000...30233088....1406076928.....80675315712.....4279521280000

%C ..2880000..204073344...14212288512...1304215105536...109212364800000

%C .12960000.1360488960..140607692800..20389194547200..2683631554560000

%C .57600000.8979227136.1372136620032.312112856088576.62224920576000000

%H R. H. Hardin, <a href="/A236997/b236997.txt">Table of n, a(n) for n = 1..364</a>

%F Empirical for column k:

%F k=1: a(n) = 400*a(n-4)

%F k=2: a(n) = 1944*a(n-4)

%F k=3: a(n) = 10*a(n-1) +8704*a(n-4) -87040*a(n-5)

%F k=4: a(n) = 158112*a(n-4) -7941224448*a(n-8) +124128835928064*a(n-12)

%F k=5: [order 16]

%F k=6: [order 17]

%F k=7: [order 15]

%e Some solutions for n=3 k=4

%e ..0..0..0..1..0....0..0..0..1..2....0..0..1..1..2....0..0..1..1..0

%e ..2..1..1..1..0....0..2..1..2..0....2..1..0..1..2....2..1..0..1..2

%e ..2..1..0..2..2....0..1..2..0..0....1..0..0..1..1....1..0..2..1..1

%e ..2..0..1..2..2....2..1..1..1..0....0..0..0..0..0....0..2..0..0..2

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Feb 02 2014