login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236973
Number of (n+1)X(1+1) 0..3 arrays with the maximum plus the upper median minus the minimum of every 2X2 subblock equal
1
256, 1238, 6024, 31008, 160764, 849024, 4508480, 24165576, 130044760, 703680344, 3818629248, 20793569096, 113460899768, 620474785528, 3398136247248, 18637788171496, 102330560045880, 562407959930776, 3093358168328656
OFFSET
1,1
COMMENTS
Column 1 of A236979
LINKS
FORMULA
Empirical: a(n) = 13*a(n-1) +42*a(n-2) -1146*a(n-3) +730*a(n-4) +45238*a(n-5) -91716*a(n-6) -1057776*a(n-7) +3000135*a(n-8) +16310461*a(n-9) -56534174*a(n-10) -174338794*a(n-11) +713473424*a(n-12) +1315995560*a(n-13) -6415058232*a(n-14) -6942637052*a(n-15) +42386327376*a(n-16) +23999583512*a(n-17) -208999865648*a(n-18) -40204212816*a(n-19) +773126646240*a(n-20) -72301086496*a(n-21) -2138887142464*a(n-22) +691733245056*a(n-23) +4373056769152*a(n-24) -2270585247232*a(n-25) -6454028894208*a(n-26) +4519617474560*a(n-27) +6589427142656*a(n-28) -5880822898688*a(n-29) -4285047160832*a(n-30) +4950176727040*a(n-31) +1439725223936*a(n-32) -2525199532032*a(n-33) -30528110592*a(n-34) +670609440768*a(n-35) -107673026560*a(n-36) -62080942080*a(n-37) +13411287040*a(n-38) +629145600*a(n-39)
EXAMPLE
Some solutions for n=5
..1..2....1..2....1..2....0..3....2..0....0..3....1..1....1..0....2..3....2..3
..2..2....1..0....2..3....0..1....3..1....3..0....2..2....2..0....1..3....0..3
..1..2....2..0....3..2....1..3....3..1....2..3....2..1....1..0....3..2....3..3
..2..1....1..0....1..2....0..1....1..3....3..0....2..2....2..1....3..1....0..3
..2..2....0..2....2..0....2..2....0..2....1..3....1..2....1..0....0..2....2..3
..3..2....1..0....2..0....0..1....1..3....3..0....2..1....1..2....1..3....3..0
CROSSREFS
Sequence in context: A237007 A237000 A236979 * A237956 A237241 A120054
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 02 2014
STATUS
approved