login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236969
Primes p such that there exist x, y where x + y, x * y and x ^ y == 1 mod p.
1
3, 19, 31, 61, 67, 79, 97, 127, 307, 331, 367, 409, 457, 499, 571, 613, 631, 691, 709, 727, 733, 787, 829, 883, 991, 1063, 1087, 1093, 1213, 1297, 1303, 1327, 1423, 1471, 1549, 1567, 1693, 1699, 1723, 1747, 1777, 1783, 1801, 1987, 2011, 2053, 2083, 2143, 2161
OFFSET
1,1
LINKS
EXAMPLE
26 + 6 = 32 == 1 mod 31.
26 * 6 = 156 == 1 mod 31.
26 ^ 6 = 308915776 == 1 mod 31.
so 31 is in the sequence.
MATHEMATICA
okQ[n_] := Block[{x, y, r}, r = Reduce[x+y == 1 && x*y == 1 , {x, y}, Modulus -> n]; r =!= False && Or @@ ((1 == PowerMod[#[[1]], #[[2]], n]) & /@ ({x, y} /. List@ ToRules@ r))]; Select[Prime@Range@300, okQ] (* Giovanni Resta, Feb 03 2014 *)
PROG
(PARI) okp(p) = {for (x=0, p, for (y=0, p, if ((((x+y) % p)==1) && ((x*y) % p == 1) && (((x^y) % p) == 1), print1("x=", x, " y=", y); return (1)); ); ); return (0); }
listp(nn) = {forprime (p=2, nn, if (okp(p), print(" p=", p)); ); } \\ Michel Marcus, Feb 02 2014
CROSSREFS
Cf. A007645.
Sequence in context: A339545 A102978 A218537 * A222590 A107165 A066811
KEYWORD
nonn
AUTHOR
Jon Perry, Feb 02 2014
STATUS
approved