login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of an analog of Pascal's triangle resulting from replacing addition with concatenation in the construction rule.
1

%I #23 Apr 01 2017 04:53:43

%S 1,2,13,224,113335,2222244446,11111333333333555557,

%T 22222222222222444444444444446666668,

%U 1111111111111133333333333333333333333333335555555555555555555577777779

%N Row sums of an analog of Pascal's triangle resulting from replacing addition with concatenation in the construction rule.

%C Number of digits of a(n) is A001405(n).

%C a(2n) begins with exactly A000108(n) 1's. - _Vladimir Shevelev_, Feb 07 2014

%H Alois P. Heinz, <a href="/A236903/b236903.txt">Table of n, a(n) for n = 0..12</a>

%e Triangle begins

%e . 1

%e .

%e . 1 1

%e .

%e . 1 11 1

%e .

%e . 1 111 111 1

%e .

%e . 1 1111 111111 1111 1

%p a:= n-> add((10^binomial(n, k)-1)/9, k=0..n):

%p seq(a(n), n=0..8); # _Alois P. Heinz_, Feb 01 2014

%Y Cf. A001405, A007318.

%K nonn,base

%O 0,2

%A _Vladimir Shevelev_, Feb 01 2014