%I #4 Feb 01 2014 07:49:32
%S 81,245,245,781,975,781,2605,4129,4129,2605,8901,19005,22393,19005,
%T 8901,31253,91617,134361,134361,91617,31253,111685,464737,824753,
%U 1107653,824753,464737,111685,406949,2442897,5371569,9168057,9168057,5371569
%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with the maximum plus the upper median minus the lower median minus the minimum of every 2X2 subblock equal
%C Table starts
%C ......81.......245.........781.........2605...........8901............31253
%C .....245.......975........4129........19005..........91617...........464737
%C .....781......4129.......22393.......134361.........824753..........5371569
%C ....2605.....19005......134361......1107653........9168057.........83876241
%C ....8901.....91617......824753......9168057.......95406881.......1136651633
%C ...31253....464737.....5371569.....83876241.....1136651633......18882502861
%C ..111685...2442897....35771489....790250057....13370261977.....301396769777
%C ..406949..13272897...248167409...8009517233...172552666157....5564630880617
%C .1503365..73869017..1753726713..83737435605..2249770214217..104489392927557
%C .5632837.419482609.12755158193.917784582345.31200328502889.2157649701194993
%H R. H. Hardin, <a href="/A236893/b236893.txt">Table of n, a(n) for n = 1..220</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 9]
%F k=2: [order 15]
%F k=3: [order 30]
%F k=4: [order 59]
%e Some solutions for n=3 k=4
%e ..0..1..1..1..2....2..0..0..2..2....0..2..1..0..0....2..0..2..0..2
%e ..1..0..0..0..1....1..2..1..0..1....1..1..0..1..1....0..1..2..1..2
%e ..2..1..1..1..0....2..0..2..2..2....2..0..1..0..2....2..0..2..0..2
%e ..1..0..0..2..1....1..0..1..0..1....1..1..2..1..1....1..0..1..2..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Feb 01 2014