login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A236887 Number of (n+1)X(2+1) 0..2 arrays with the maximum plus the upper median minus the lower median minus the minimum of every 2X2 subblock equal 1
245, 975, 4129, 19005, 91617, 464737, 2442897, 13272897, 73869017, 419482609, 2416657937, 14082031833, 82711630513, 488789176177, 2900660394265, 17268508407633, 103027230851025, 615687930858265, 3683409663312753 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 2 of A236893

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 14*a(n-1) -36*a(n-2) -311*a(n-3) +1782*a(n-4) -328*a(n-5) -15312*a(n-6) +26368*a(n-7) +28560*a(n-8) -103120*a(n-9) +42336*a(n-10) +79216*a(n-11) -66656*a(n-12) -8256*a(n-13) +20352*a(n-14) -4608*a(n-15)

EXAMPLE

Some solutions for n=5

..1..0..1....1..0..1....0..2..1....1..2..1....1..2..1....0..0..0....1..0..1

..1..0..1....0..1..0....2..2..1....0..1..0....2..1..2....0..1..0....1..0..1

..0..1..0....0..1..0....2..0..1....0..1..2....0..1..0....1..1..1....2..1..2

..1..2..1....1..0..1....0..0..1....1..2..1....0..1..0....1..0..1....2..1..0

..1..2..1....1..0..1....0..2..1....2..1..2....2..1..0....1..1..1....0..1..0

..1..2..1....0..1..0....1..1..0....0..1..2....0..1..0....0..1..0....2..1..0

CROSSREFS

Sequence in context: A257781 A188239 A132830 * A237161 A056264 A154080

Adjacent sequences:  A236884 A236885 A236886 * A236888 A236889 A236890

KEYWORD

nonn

AUTHOR

R. H. Hardin, Feb 01 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 11:22 EDT 2020. Contains 337359 sequences. (Running on oeis4.)