login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1)X(2+1) 0..2 arrays with the maximum plus the upper median plus the minimum of every 2X2 subblock equal
1

%I #4 Jan 31 2014 06:09:07

%S 255,1231,6217,34163,191657,1116735,6597729,39752795,241456349,

%T 1481423855,9128173539,56528510141,350835283263,2182763442241,

%U 13595247632269,84778601345407,528959639062227,3302250773429227

%N Number of (n+1)X(2+1) 0..2 arrays with the maximum plus the upper median plus the minimum of every 2X2 subblock equal

%C Column 2 of A236798

%H R. H. Hardin, <a href="/A236792/b236792.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 15*a(n-1) -9*a(n-2) -880*a(n-3) +3426*a(n-4) +18155*a(n-5) -121505*a(n-6) -115924*a(n-7) +2003052*a(n-8) -1313613*a(n-9) -18570720*a(n-10) +30811261*a(n-11) +100624740*a(n-12) -269758235*a(n-13) -288602304*a(n-14) +1357891776*a(n-15) +124420915*a(n-16) -4267235783*a(n-17) +2172222593*a(n-18) +8388777279*a(n-19) -8441776674*a(n-20) -9593628558*a(n-21) +15912829245*a(n-22) +4511594574*a(n-23) -17273359586*a(n-24) +2518712071*a(n-25) +10814653852*a(n-26) -4621110462*a(n-27) -3640874304*a(n-28) +2541569180*a(n-29) +539526448*a(n-30) -683839304*a(n-31) +5712224*a(n-32) +95082784*a(n-33) -11026368*a(n-34) -6334080*a(n-35) +1095936*a(n-36) +148480*a(n-37) -29696*a(n-38)

%e Some solutions for n=5

%e ..0..2..0....1..0..1....0..2..0....0..1..2....1..1..0....0..0..2....1..2..0

%e ..0..2..0....0..2..0....2..2..2....2..0..1....2..0..2....2..2..1....0..2..0

%e ..2..0..2....0..1..0....2..0..2....1..1..2....0..1..0....0..2..0....1..2..2

%e ..2..1..2....2..0..2....1..2..2....2..0..0....2..1..2....0..2..1....2..0..0

%e ..0..2..0....0..1..1....0..2..0....0..1..2....0..0..1....0..2..0....1..2..2

%e ..1..2..1....2..1..1....2..2..2....2..0..0....1..2..1....0..2..0....2..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 31 2014