login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(p^n)=p^(n+1)(p-1) if p is prime and a(nm)=lcm(a(n),a(m)) if gcd(n,m)=1.
3

%I #23 Feb 27 2014 08:35:41

%S 1,4,18,8,100,36,294,16,54,100,1210,72,2028,588,900,32,4624,108,6498,

%T 200,882,2420,11638,144,500,2028,162,1176,23548,900,28830,64,10890,

%U 4624,14700,216,49284,12996,6084,400,67240,1764,77658,4840,2700,23276,101614

%N a(p^n)=p^(n+1)(p-1) if p is prime and a(nm)=lcm(a(n),a(m)) if gcd(n,m)=1.

%H Vincenzo Librandi, <a href="/A236563/b236563.txt">Table of n, a(n) for n = 1..1000</a>

%t fa=FactorInteger; lam[p_, s_] := p^(s + 1)(p - 1); lam[1] = 1; lam[n_] := {aux = 1; Do[aux = LCM[aux, lam[fa[n][[i,1]], fa[n][[i, 2]]]], {i, 1, Length[fa[n]]}]; aux}[[1]];Array[lam,100]

%o (Haskell)

%o a236563 n = foldl lcm 1 $ zipWith (\p e -> p ^ (e + 1) * (p - 1))

%o (a027748_row n) (a124010_row n)

%o -- _Reinhard Zumkeller_, Feb 27 2014

%Y Cf. A027748, A124010.

%K nonn

%O 1,2

%A _José María Grau Ribas_, Feb 22 2014